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FOREWORD

This report was prepared in fulfillment of the requirements of NASA

contract NAS8-29193. George C. Marshall Space Flight Center was the con-

tracting agency. Technical Coordination was maintained through Dr. Steve

Winder, Chief, Statistical Dynamics Section, S&E-AERO-DDD.
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ABSTRACT

An investigation was made of the problems of excess control devices and

insufficient trim control capability on shuttle ascent vehicles. The trim

problem is solved at all time points of interest using Lagrangian multipliers

and a Simplex based iterative algorithm developed as a result of the study.

This algorithm has the capability to solve any bounded linear problem with

physically realizable constraints and minimize any piecewise differentiable

cost function. Both solution methods also automatically distribute the com-

mand torques to the control devices.

It is shown that trim requirements are unrealizable if only the orbiter

engines and the aerodynamic surfaces are used. On the other hand if the solid

engines are controllable there is ample control margin and.realistic cost

functions can be minimized to optimize the solution.
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049 - Shuttle configuration 049

{T } - Torque command profileC

th
6. - Control setting of j controllerJ

W(6) - Objective function

0(6.) - Equality constraints, i.e., yaw/roll moments = 0.0

6. , 6. - Boundary values for trim devices
min max

th
A. - Lagrange multipler for i constraint

1

[0] - Penalty matrix inverse

6 - Aileron angle
a

6R  - Rudder angle

6e. - Engine i yaw angle

y

6e. - Engine i pitch angle
lp

S- Wind induced sideslip angle

C k - Roll moment due to 6

i

C - Yaw moment due to 6.
6 

11

,y - Constants defined in the text for convenience

Zcg - cg - Z location

Ze. - Engine-i Z location
1

Pe - Engine i pitch angle1

Ye. - Engine i yaw angle
1

SRM - Solid rocket motor(s)

TVC - Thrust vector control
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DEFINITION OF SYMBOLS AND ABBREVIATIONS (Concluded)

Xj - Independent variables of linear programming problem

o th
a. - j coefficient of objective function of linear programming

problem

Z - Objective function of linear programming problem

I th th
a. - j coefficient of ith constraint equation of linear

programming problem

b i  - Right hand side of ith constraint equation of linear pro-

gramming problem

q- Dynamic pressure, nts/m 2

2
S - Reference area, m

b - Reference length, m
m

F .- W + i.
i=l

A - Range percentage used for iterative Simplex solution

NAR - North American Rockwell
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Section I
INTRODUCTION

This report presents the results of a study to develop a technique to

solve the trim problem of an aerospace vehicle when the number of control

variables exceeds the number of variables to control trim. Distribution of

the trim commands to the various control variables in some "optimum" manner

is a further goal of the study. The goal of the study is not a computer

program as much as it is the development a practical method of understanding

and solving the trim problem.

The importance of solving this type problem became evident as the Space

Shuttle vehicle requirements were established. In particular, the ascent phase

of flight is one area in which these problems arise. In ascent the mated

configuration has only one plane of symmetry causing the inherent problem of

zero lift and zero moment occurring at different angles-of-attack. Cross-

coupling problems are also severe in some candidate designs.

Several candidate configurations have insufficient control authority to

control the vehicle in the presence of headwinds or crosswinds with orbiter

engines only. When the aerodynamic surfaces on the orbiter are used, the

shuttle may or may not be controllable, but in any case the number of control

effectors becomes greater than the number of states to control, creating an

infinity of trim solutions for any constant disturbance. If controllability

problems require vectoring the solid-rocket motors, the number of trim

combinations proliferate.

The specific goal of this study was to solve the problem of distributing

the trim commands to the various controllers, simultaneously using the extra

control choice latitude to optimize some phase of the ascent flight. Further

goals were that the solution to the trim problem be simple and easily imple-

mented and that the solution process give the engineer a "feel" for the rela-

tive difficulty of meeting the trim requirements as compared to the trim power

available.

1-1
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Of equal importance to solving this problem is the delineation of the

concepts involved in its solution. Since the sample problems chosen are

realistic, a computer program was necessary to handle the data efficiently,

but the ideas behind the program receive the emphasis throughout this report.

The problems that arise in trimming the Shuttle ascent vehicle are pri-

marily in the roll/yaw planes. The shuttle lateral plane trim problem can be

outlined in the following manner.

* There are three vehicle state variables: roll, yaw, and sideslip

angle.

* There are eight control devices with effectiveness in the lateral

plane: three orbiter engines, two solid-booster engines, right and

left aileron and a rudder. Each engine has two degrees of freedom

(pitch and yaw); however, the top orbiter engine is on the vertical

centerline of the vehicle (049 data). Therefore, it has no effect on

the lateral dynamics when it is pitched. The net result is 12 control

states in the lateral plane.

* All control devices are limited by control stops or hinge moments or

both.

* The problem is to find the range of control effector settings that

satisfy the trim requirements on the states in some optimum manner.

The reason for selecting the trim problem to optimize the control devices is

that Shuttle command torques and forces were currently unknown. Therefore,

trimming an aerodynamic disturbance, such as a mean wind, is a convenient sub-

stitute for a torque command profile. The results of this study will give not

only a trim solution, optimum in some manner, but a mechanization of the dis-

tribution of commands to the control devices to achieve a given flight state.

Figure 1-1 illustrates the approach described in the previous paragraph.

The T quantities represent the torque command profile. The optimizationc

scheme.should be independent of the torque commands so that the guidance design

functions and control design functions can proceed somewhat independently of

each other until system integration time.

The general problem can be stated formally as follows:

minimize

1-2
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DISTURBANCE T c  OPTIMUM PLANT
SCHEME

FEEDBACK)

Figure 1-1. FEEDBACK DIAGRAM SHOWING OPTIMUM SCHEME

subject to the trim constraints

i(6.) - T = 0
1 3 c.

1

i = 1, 2, ... ,m
j = 1, 2, ... , n

and inequality constraints

6. < 6. < 6.
3min -- 3 -- imax

where the T represent a torque command of a disturbance vector.c

In the Shuttle trim problem considered, the 4i (6j) can be represented by

a set of i linear equations and the T are just constants. This means thatc.

the equation involving .(6.) can be solved for i 6.'s if j-i 6.'s are chosen

beforehand. The boundaries of the problem can be explored by setting j-i con-

trol settings on the bounds and calculating the remaining i control variables.

Data for a Shuttle type vehicle were furnished by the COR. These data

are presented in Appendix A. The configuration is similar to the 049 config-

uration with a 400-ft2 forward fin to reduce the lateral stability. No drag

data for the aerodynamic surfaces were included, but the rudder drag coeffi-

cient was estimated from wind tunnel data on later configurations. The aileron

drag coefficient was assumed to.be equal to the rudder for the purposes of this

study. No aileron side force coefficient was included in the data either,

but this turned out to be unnecessary for the problems solved.

1-3
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The position limits for the rudder and aileron are shown in the data as

well as the hinge moment limits for these surfaces at variousflight times.

The engine gimbal stop limits were assumed to be 10 degrees circular displace-

ment for the orbiter engines and 10 degrees diagonally up or down for the

solid-rocket motors. No data on engine hinge moment limits were available so

they were not considered in the problem solution. However, the method of

solution used would handle this type of restriction with a simple data change.

The mean cross-wind was used as a disturbance for much of the study (Appendix

A).

Figure 1-2 shows the mean crosswind included roll/yaw torques (normalized

by dividing by q sb) at times 25-90 seconds. As can be seen, the yaw torque

peaks at 60-65 seconds and the roll torque peaks at about 70 seconds. However,

dynamic pressure peaks at 80 seconds so the maximum controllability problem

occurs around 75-80 seconds. It is impossible to predict the exact time in

advance, since the control problem also depends on the individual control

effectiveness and their proportional roll/yaw effectiveness. These parameters

are functions of thrust, dynamic pressure and Mach number.

The approach and results section presents in somewhat chronological

order the approaches taken and the results achieved in the study. Specifics

involving data some of the mathematical developments, and the computer program

developed are included in the Appendices.

1-4
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TORQUE COMMANDS
(MEAN CROSSWIND)
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Figure 1-2. MEAN CROSSWIND INDUCED ROLL/YAW TORQUES FROM 25-90 SECONDS
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Section II

APPROACH AND RESULTS

The trim problem was approached by first formulating the constraints and

limits for the control effectors in a form suitable for analysis. Then, to

give the investigator a feel for the problem, several optimized trim solutions

were calculated for special cases. After sufficient feel was obtained, the

optimization problem was solved using a quadratic cost function. This problem

has been solved many times and it can be shown that any cost functional that

can be represented by a quadratic cost function can be solved by Lagrangian

multipliers, the technique used in this part of the study. Several sample

problems were reduced by.this method with the objective of giving additional

insight into the problem. Since the Lagrangian multiplier technique cannot

directly handle inequality constraints, this approach does not guarantee a

realizable solution even if one is available. Therefore, the next step in the

approach was to develop a means of solving the trim problem with inequality

constraints and with a general form cost functional.

Several methods were available to solve bounded problems with nonquadratic

cost functions. All of them, except in special cases, require iteration to

reach their solution. It was decided that a solution algorithm based on the

simplex algorithm would be conceptually the simplest to implement. The advan-

tage of simplex in the solution of the trim problem is that it can be treated

as a.black box which simultaneously solves the optimization problem with more

variables than equations and keeps the solution within the variable bounds.

Several sample problems were solved by this method and the results eval-

uated. Finally, a dynamic survey was performed to give a feel for the inter-

action of the Shuttle dynamics with the control trim minimization scheme.

2.1 EVALUATION OF TRIM BOUNDARIES

The solution to the trim problem (zero torques and forces) is an indefinite

set of control trim placements. In fact there are an infinity of solutions,

since there are fewer equations than control variables. However, the unknown

2-1
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control variables are limited in their displacements so the set of possible

solutions can be regarded as a bounded, infinite set.

Figure 2-1 shows some of the boundaries of the trim solution as calculated

for 80 seconds flight time. This figure gives an indication of the relative

trim torques available at 80 seconds flight time. As can be seen, each control

device was placed individually on its limit and the other control trim settings

were computed. Since the possible trim solutions of 11 control devices form a

volume in 11-space it is impossible to show graphically; but the points shown

in Figure 2-1 represent points on the boundary of the 11 volume. Since engines

two and three do not pitch in the solutions and since they yaw about 75 percent

of engine one they are not shown on their limits.

Figure 2-2 shows the minimized control trim settings when each control

device was shut out individually. This shows that the vehicle has sufficient

control power for trim with any one controller out as long as the SRMs have

TVC. It also shows that the aileron has little effect on the trim requirements

since deletion of the aileron does not appreciably change.

2.2 TRIM PROBLEMS WITH QUADRATIC COST FUNCTIONS

A quadratic cost functional is a function made up of the sum of the squares

of the variables in the function. The partial derivatives of a quadratic cost

function are linear making the minimization of the cost a linear problem.

Several techniques can be used to solve such problems exactly but the most

convenient one for this problem was Lagrangian multipliers.

The Lagrangian multiplier technique will minimize quadratic cost functions,

giving an exact solution to the trim problem optimized with respect to the

cost. Penalty functions can be devised to minimize such things as drag due to

zero surface deflection, thrust gimbal angle, and off-nominal translational

accelerations.

The penalty functions can be accounted for in the cost functional. Defi-

nition of the cost functional depends upon the particular problem being solved.

In general, this functional is a summation of various cost terms which is to

2-3
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be minimized subject to the constraints. The individual terms differ from each

other qualitatively and must be weighted in accordance with the requirements

of the investigation. An example cost functional, m, is defined below:

2 2
w = K x(DRAG DUE TO ELEVON DEFLECTION) + K2x(THRUST GIMBAL ANGLE)1 2

+ K3x(RUDDER HINGE MOMENT) + K4x(VARIATION OF CONTROLLER FROM

2 2
MEDIAN VALUE) + K5x(OFF-NOMINAL TRANSLATIONAL ACCELERATIONS),

where the K. scale factors are selected so that the various terms have the
1

proper relative costs. The K1 and K2 terms are included so that the "optimum"

trim solution will not produce excess AV losses. The K3 term prevents a trim

solution which requires an excessively large hydraulic system for rudder

deflections. The K term prevents a trim solution where a control variable

value is close to its maximum limit. The K5 term prevents a solution where

the resultant translational accelerations are greatly different from the nomi-

nal values. However, the investigator must bear in mind that regardless of

the quadratic cost functions devised, it will always reduce to the form

m 2
w X (a.

j=1

because the K terms can always be summed with each other if the i
th control

variable appears in the cost functional more than once. In effect, any study

of quadratic cost functionals, no matter how exotic they may be, will always

amount to a variation of the a. coefficients, which are just constants.
J

Since it was desired to develop a generalized technique for solving trim

minimization problems and not to perform a sensitivity study on quadratic cost

functions, it was decided to set up and solve a few sample problems to gain

further insight into the general trim problem. No attempt was made to repre-

sent all possible penalty functions in the cost functional.

The problem was reformulated and Lagrangian multipliers were used to solve

in the following manner:

minimize
m

W(6.) = (a.6.)

2 j=-5

2-5
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subject to

n
= Ci 6. - T. = 0

j=1 3

i = 1, 2, ... ,n

m
Let F = + x. 

i=1

To minimize F, set

9F
- 0

J

j = 1, m

This will yield m equations and m + n unknowns since the Xi are not explicitly

known. Switching to matrix notations:

F C2K

Ml a21 0 61 C11 C 12-..C .m 1
-6 

C 1 C • 1
= 2 .21 22'.

9F . 2 6C'
96 0 an " n n1 rm n

define Q such.that

a 2 0

0 = 2
0a

m

let

C11 C1 2 ** Cm

C 21 {6} =

C C n

n2-6

2-6



TR-1246
NORTHROP SERVICES, INC.

T 1-

ST f X2 and
c .2 .2

n n n

returning to Equation (1) we can solve for 6

1 -1 T6 =- - 1 C T (2)
2

also

= C 6 - T = 0 (3)
c

eliminating A

{6} = [I] [C]T {[C] [] [C]T} {T } (4)c

We have solved for 6 in terms of the C matrix, the penalty matrix 0, and the

torque commands T cc

An immediate result of using three constraint equations (yaw moment = roll

moment = side force = 0) is that no practical minimum solution was obtainable.

That is, the control settings are greater than the bounds. The zero side force

requirement was the cause of this. When the requirement was dropped the prob-

lem reduced to the following:

minimize

S= (a a )2 +(a2 R ) 2+(a36eiy) 2(a 6e2p)2+(a5 
e2y 2

+(a 6 6 e 3p) 
2 +(a 7 6 e3y 2 (5)

subject to

i = C 6 + C 6R + C 6 + C 2  6 + C 6
S 6a a 6R 6ely ely 6e2p e2p 6e2y e2y

6 +C 6 -(-CB) = 0 (6)

6e3p e3p 6e3y e3y 
..

2-7
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2 C a + C n 6R + C 6ely + C 6e2p + Cn 6e2y

2 nSa n6R n6ely 6e2p 6e2y

+ C 6  e3p + C 6 e y- (-Cn 8) = 0 (7)
n6 e3p n6e3y 8

where S comes from the mean wind. The a. coefficients can be set to any value

so that varying them will represent objective functions that 
can minimize con-

trol deflections, hinge moments, thrust losses due to drag and engine displace-

ments. This technique cannot automatically handle the limits on 
the control

devices so an iteration procedure was devised to solve 
for 6 and then check for

excessive values. If they occurred the penalty coefficients were systematically

varied to see if the solution could be driven within the physical 
bounds.

Using the 049 data, the overriding problem near max 
Q (75-80) seconds is

controllability. By choosing the penalty coefficients according to the fol-

lowing formula a solution that minimizes control deflections 
can be obtained.

a. = 10/minimum (16. I or 16 min) )
3 dmax mi

The philosophy here is that the control devices that are most 
severely limited

will be most heavily weighted. Unfortunately, the solution to this problem,

in the neighborhood of max Q, yielded a rudder setting approximately two times

as large as the control power can furnish (hinge moment limited). The aileron

was also at or near the limit at this time. Systematically varying the penalty

coefficients to drive these two devices within the control limits resulted in

exceeding the control limits on all of the controllers. While this is not

formal proof that there is no solution at these points it is very strong evi-

dence for this conclusion.

Additional insight into the problem can be gained by showing that (for

the 049 data) engines 2 and 3 are not independent of each other if there is

no reason to weigh one's displacement more heavily than the other.

From the data the following holds:

2-8



TR-1246
NORTHROP SERVICES, INC.

C=
6e2p 6e3p

C n  = CnCn n
6e2p 6e3p

C = C
6e2y 6e3y

C = C
n6e2y n6e3y

6 C C
a 6a n6a

6 RC C
6R -6R

6ely C£1 6ely n6ely T

6 e2p = C'nA' 1
02C CL A 26e~p C '6e~p c n 6e2p [A

6e2y C6e2y n6e2y

6' C
6e3p C 6e2p n6e2p

6e C C
Se3y C£ 6e2y n6e2y

where A = ([C] [] [C] t) -1

EC C 2E ..CC
6j 6 n6 j

7~ . . C

J C6j -ii..C C6

S 6j j n6j

2,JE C''J ',j n 6j

n2-9c-2 [.C. C..

2 -2fri-1 6 n - $3n~

2-9
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S A 1T + A12 T )

[ c:2 } 12 Z1 + All c2

and if 44 and Q66 and 55 77 (equal weights on engines 2 and 3).

Equation (4) can be written as

T

6 = [][cT [A] T2 }11 ( + a+C6a)

6R Q22 (Ci 6R 
o + Cn 6 R )

ely 33 (Ct 6ely+ Cnely)

6 e2p 44( e2p 6e2p

6 e2y 55( C 6e2y a + Cn6e2y)

e 3pA n6 e3p Q44(-Ct6e2p Cn6e2p Y)

6 2 C aL + C Y
e3y 55 6e2y n6e2y

(8)

6e2p =-6e3p = 44 C6e p ' + Cn6 e Y)6e2=~63P \(G 6 2p )~~
6e2y = 6e3y = 55 C 9 6 e 2 y + Cn6e2y)

By a similar approach it can be shown that engine 1 is not independent of

engines 2 and 3 if its penalty coefficient is the same as 2 and 3. The

following ratios hold:

C C (Zel+Zcg)cos Pe1

tely 9e2y (Ze2+Zcg)cos Pe 2 cosYe2  (9)

2-10
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cosPel

C = C (10)
n6ely n6e2y C°SPe2 CSYe2

where Zel is the Z location of engine one, Pel is the pitch angle of engine

one and Ye2 is the yaw angle of engine 2. The result is:

Zel Zc cosPeI C +cosPel C n

dely (Ze2+Zcg) cosPe2cosYe2 a I6e2y CoSPe 2 csYe2 6e2y 6e2y

C+ C
e2y n6 2  (11)

The relationship between 6ely and 6e2y is not a direct ratio because A and y

are functions of T1 and T2 , which are the disturbance torques. 
If the relative

value of the disturbance torques change with time, or a different kind of dis-

turbance is used, the ratio between 6ely and 6e2y will also change.

Similarly it can be shown that the left and right ailerons operate 
as

mirror images of each other. Since it is difficult to imagine a case where it

would be advantageous to operate them independently they have not been sepa-

rated in any of the work done. However, the orbiter engines have all been

operated both in pairs and independently in optimization procedure 
to date

and the results have verified the developments in the previous paragraphs.

Figure 2-3 shows the results of minimizing the control trim displacements

at selected time intervals between the flight times of 25 and 90 seconds. As

can be seen, the trim settings exceeded the hinge moment limits on the rudder

and, to a lesser degree, on the aileron near maximum dynamic pressure. The

severity of the controllability problem is illustrated in Figure 2-4. Since

the rudder and the aileron exceed the hinge moment limits at 75 seconds, this

time point was chosen as a test of the penalty coefficients iteration scheme.

If a control device, say 6., exceeded its maximum absolute value then its new

penalty coefficient (a') was reset by the following formula:

al aj m 6j[ (12)

a = min[16jmax ' 6Jmi n ] (12)

where min [ ] means the minimum of the quantity in brackets.
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Figure 2-4 is a plot of the iteration steps the computer program followed

at 75 seconds flight time. Iteration forced the rudder down near its maximum

but also forced the engines to exceed their limits. The program failed to

find a realizable solution, indicating the magnitude of the controllability

problem at this time point (with only a mean wind disturbing function). As

previously stated, this does not prove that the trim torques are nonrealizable

but points strongly to the possibility.

To alleviate the controllability problem the solid rocket motors (SRM)

were allowed to gimbal (TVC). Again the engines acted as a pair as long as

the penalty coefficients on the engines were equal. As Figure 2-5 shows, the

solid engines relieved the controllability problem. The peak rudder deflec-

tion of 3.0 degrees was only about 13 percent of the maximum rudder deflection

(hinge moment limited) at that time. The peak solid engine deflection was

about 27 percent of the maximum (10 degrees) at 70 and 80 seconds.

The conclusions drawn from the Lagrangian approach to trim optimization

are as follows:

* Controllability is a problem on the 049 even with the aerodynamic

surfaces, if SRM TVC is not used.

* If SRB TVC is used controllability is no longer a problem.

* The aileron is relatively ineffective in trimming the vehicle.

* If there are no reasons to weight them differently, engines two and

three yaw equally and pitch oppositely. The solid engines pair also

with the right engine displaced right and down and left engine right

and up.

* Trimming the side force is probably impractical.

In summary, the Lagrangian approach gives insight into the problem 
and an

exact solution to the quadratic cost problem. However, if the cost can not be

adequately represented by a quadratic the solution will 
be useless. Further-

more, the procedure does not guarantee a solution within the 
variable bounds

nor does it indicate if a feasible solution is possible.

PRECEDING PAGE BLANK NOT FILMED
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2.3 BOUNDED TRIM PROBLEMS WITH GENERAL COST FUNCTIONS

The trim problems investigated in this study had control variable bounds

that typically limited their solutions. In the first part of this study it

was necessary to obtain a solution and then check to see if the solution was

physically realizable, that is within the variable bounds. Furthermore if the

actual cost function was not quadratic then the Lagrangian multiplier technique

could not be used at all.

A solution process analogous to the Lagrangian multiplier technique can be

used to solve this class of problems. However the details of the solution are

involved and the solution process does not provide insight into the problem.

A brief description of this approach is included here for clarity.

If the cost functional is differentiable, but the derivatives are non-

linear, setting the partials of the cost with respect to the control variables

to zero yields a set of nonlinear homogeneous equations which can be solved by

iteration (if the partials can be written analytically). If the partials can

only be represented by graphs or tables the mechanics of the solution are much

stickier.

Handling the inequality constraints adds more complexity to the problem.

This requires a transformation of variable and definition of n additional

variables linearly related to the original n variables.

Since one of the goals of this study was to develop solution concepts, it

was felt this brute force approach would not totally fulfill the work statement.

Therefore, the following linear programming technique utilizing simplex was

devised.

The idea behind this approach was that the simplex algorithm can be used

to force an iteration procedure to converge in the vicinity of the lowest cost.

During the convergence procedure simplex will also require the controller

bounds to be observed. The cost functional in a simplex problem may be recog-

nized as a summation of partial derivatives. Conceptually it is very simple
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to place any form of partials in the simplex cost row and the simplex solution

that results will be as good as the values of the partials over which the

iteration ranges. If this range is held small enough the solution will approxi-

mate the minimum cost on that range.

The primary difference between a linear programming approach to the prob-

lem and the Lagrangian multipler technique is that the control limits are

considered in the solution by linear programming. In other words linear pro-

gramming will produce a feasible solution in proximity to the optimal solution.

If the control limits are high enough to not impact the solution both methods

willgive approximately the same answer.

As stated previously the ultimate goal of this study was the development

of concepts and techniques to solve the trim problem. The solution to the

general trim problem is actually an algorithm developed around the simplex

technique.. Therefore this algorithm is the primary result of the study. The

central philosophy of this algorithm is to use the simplex procedure (ref. 1)

to solve the problem of minimizing a general cost function, w, over a small

range of the variables' permitted values.

2.3.1 Description of Solution Algorithm

The mathematical basis for the solution algorithm rests on linearizing

the cost function, m(6i), about a feasible solution, {6io}. The cost can be

written as follows:

n

W(6i) = (6i ) + E -- (6i- 6i
o i= i o

The problem is to find away to minimize w(6i ) (which is always positive of

course). This problem is the same as making

n
(6i (

i=l i o

the largest negative value possible. As will be shown later, Simplex will

solve the latter problem, but an iteration algorithm must be used to find the

minimum m(6i ) because it is nonlinear in the general case.
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The algorithm developed to solve the trim problem can be described in

simple terms. The simplex algorithm itself is described in Appendix B. After

the problem is defined the variables are transformed so that they are all non-

negative, which is a requirement of simplex. Then, if the neighborhood of the

solution is known beforehand, an approximate solution is used as a starting

point. If nothing is known about the solution the entire range of the vari-

ables can be allowed in the starting solution. In either case a feasible

(meets the trim requirements and variable bounds) solution is calculated to

start the procedure. Since simplex utilizes a cost row made up of linear costs,

this row must be filled with the partial derivatives of the cost function with

respect to the appropriate variables. The simplex procedure will solve for the

minimum cost solution based on the linearized costs and keep the solution within

the bounds of the variable limits. Of course the solution is only as good as

the linear approximations to the cost partials. To converge on the correct

solution temporary bounds, which are always within the real bounds, are created

about the feasible solution. These bounds are set using a range percentage,

delta, about the feasible solution. After the simplex solution is calculated,

using the temporary bounds, the actual total cost, w, is computed. As long as

the new total cost improves the range percentage remains the same. The problem

is set up and solved again, using the last computed solution as a starting

point about which the new bounds are set and at which the new linearized partial

costs are computed. If the total cost does not improve delta is halved and the

new solution is calculated. When the range percentage becomes small enough the

simplex solution will be approximately the exact solution. At some improvement

criteria the process is terminated. A simplified flow chart of the procedure

is shown in Figure 2-6.

2.3.2 Formulation of Simplex Problem

The classical linear programming problem is as follows:

Find X > 0 such that (13)

n
Z a. x is minimum and (14)

j=l
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R = 6Jmax -6jmin

A 0

X = Xjo

Xj = X +AR
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XJmin = X. - AR
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[ max 6Jmax 6Jmi n
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Figure 2-6. FLOW CHART OF SOLUTION ALGORITHM
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n . .
Sa' X < b (i = 1, ...,m; m < n) (15)

j=l 3  -

The x are our control trim settings, Z is the objective function and Equation

(15) represents the zero torque requirements and the control limits.

The formal statement of the linear programming problem indicates that

only positive values of the problem variables are allowed. Furthermore, the

cost function, Z, is a linear summation of the products of the problem vari-

ables and their constant multipliers. Since any practical control trim problem

may require some negative control settings, a transformation of variables was

performed on the problem variables.

If we chooseX = 6 - 6.

3 3 3min

then since 6. < 6. < 6.
imin - - imax

0 <X. <6. -6.
-- - max 3min

and since 6. - 6. > 0 (16)
max 3 min

the requirement on X. is consistent.

In the notation of Equations (13) through (15) the problem has m con-

straints and n variables. From experience the algorithm will solve the problem

in m to 3m steps (ref. 2). However, in the trim optimization problem simplex

has to be applied iteratively until the cost reaches a near minimum. If the

original solution was allowed to range over the whole boundary, the investi-

gator's experience showed simplex would be applied as many as 20 times. If

the solution is approximately known beforehand, the number of iterations was

reduced sharply. One way to predict the approximate solution is to use the

solution from the previous nearby time steps.

The cost functional can be any piecewise differentiable function. A

description of the computer program used to solve the trim problem is in
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Appendix C. The cost functional is represented by two simple subroutines so

that if it needs to be changed in form (not just coefficients) it can be

readily reprogrammed.

For purposes of testing the validity of this approach as well as obtaining

useful information, a cost function was defined to represent the drag losses

due to aerodynamic surface deflections and the thrust losses due to vectoring

the engines off the centerline. The drag losses are represented as typical

linear aerodynamic terms which are functions of the absolute aero surface

displacement. The thrust losses are calculated by subtracting the cosine of

each engines' circular displacement from unity and multiplying by its thrust.

Since each engine is represented in the control equations by a pitch and a yaw,

the circular displacement is the square root of the sum of the squares of the

pitch and yaw displacements. The linear programming procedure will handle

any piecewise differentiable cost function but this cost function in Equation

(16) was chosen in the bulk of the study

2 1/2

w = QSf CD 6i + Ti[l - cos( 62 + 6 i+)J (16)
re i= 6 i=3,5,7,9. ..n

i

The simplex costs are defined as

z a6.

solution

or
2 2

S 64 sin 6 i + 6 i+1 6i
S= [qSre f CD6 - F i 1,2 + [Ti 2 i = 3,5,7,9 ...

i i i+l
(17)

sin 6 + 62
+ T. 1 -. 6. i = 4,6,8,10,•

S 2+ 2
i i-1
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The rudder drag coefficient was set to 0.7 x 10-3 nt/deg, a value that was

estimated from looking at Shuttle rudder data for a similar configuration.

For convenience, since there was no aileron drag data available, the aileron

drag coefficient was set to that value also.

2.3.3 Minimum Thrust/Drag Losses Withoug SRM TVC

Figure 2-7 shows the minimum thrust, minimum drag results for 50 to 90

seconds for the 049 configuration. The disturbance is the same as that used

before, the mean wind. This plot shows the trim results when the solid engines

are not used. The "infeasible" region is the time between 74 and 85 seconds.

During that period trim requirements cannot be fulfilled with only the orbiter

engines and aerodynamic surfaces.

At around 67 seconds the aileron began to deflect. It has not been

visible up to that time because its cost was high relative to its control

effectiveness. It was visible from that time on because it was necessary to

use it to meet the trim constraints, regardless of cost. The limitations on

the trim power were caused primarily by the rudder hinge moment limits, which

are shown on the graph. It can be seen that the rudder reached its hinge

moment bound about three seconds before the control limits were exceeded. At

that time the other controls began to increase rapidly toward their bounds as

the rudder was squeezed by its hinge moment limit. The aileron reached its

hinge moment limit about one second before the infeasible region began. The

yaw deflection of engine one increased toward its bound and probably reached

it in the infeasible region. On the other side of the infeasible region (85

seconds) something similar occurred. The aileron followed its negative hinge

moment bound for a second and then dipped rapidly to zero. The rudder remained

exactly on the positive hinge moment limit while engine one yaw deflection

decreased.

In the region between 60 and 70 seconds Mach 1 occurs, causing sharp vari-

ations in the aerodynamic coefficients. In that time span the rudder decreased

while the yaw displacement of engines two and three increased. This appears

to be the only consequence of Mach 1 on the control settings
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2.3.4 Control Variable Proximity Penalty Functions

To show the feasibility of using penalty functions to prevent placing

the control devices on their limits, a penalty function was devised as shown

below:

2 F- 2 21
= qSref CD I(6il + T 1 -l cos(6 + 6i+ )

=1 6. i=3,5,7,9,...n
1*

n 26. - i - I )
+ I max min (18)

i=1 6 1 i -

max min

The last term in the cost function represents a penalty for approaching the

variable bounds. This was modified in the "COST" and "SCOST" subroutines

(Appendix B) and the solution was obtained for the no SRM TVC case at 71

seconds. The table below compares these results with the pure thrust/drag

minimum results from Figure 2-7.

(Nt)

6a 6R 61e 6e3p 6e2y Loss

Thrust/Drag Minimum -6.9 7.5 3.14 2.1 .66 74000 6e2p = -6e3p

Proximity Penalty -6.2 6.7 4.75 2.1 .86 74500 6e3y = 6e2y

means on boundary (hinge moment limited)

The penalty function forces the rudder off its limit, but consequently it in-

creases displacement of the engines (6ely and 6e2y). It is clear that the

altered penalty function should cause more thrust/drag loss and the table shows

that it does. Or course a proximity penalty function does not increase the

vehicle's trim power, but it does keep the control devices off their bounds

until the boundary value(s) is absolutely required for trim.

2.3.5 Minimum Thrust/Drag Losses With Added Control Power

Figure 2-8 represents the results of minimizing the thrust and drag losses

(subject to the mean wind) with SRM TVC in the control loop. As can be seen,

the aileron did not deflect at all and the rudder only deflected between 60 and

70 seconds. This seems to contradict the results on the previous graph since

on that plot the rudder dipped at Mach 1 and the engines increased. However,
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the costs of the rudder and engines are dissimilar functions. In fact, the

derivatives of the engine costs are functions of the engine settings so that in

one region the partial with respect to rudder may be larger than the engine

partials, and in another region the partials with respect to engines may pre-

dominate. The solid engines are utilized at around 1-2 degrees deflection, a

region in which their thrust loss is very small. So simplex selected the rudder

to use in place of increasing the solid engines and causing a larger thrust loss.

Figure 2-9 shows the time history of the vehicle with beefed up hydrau-

lics. (The aileron and rudder hinge moment limits removed) as can be seen,

the rudder peaked at 12.8 degrees, at 80 seconds. At that time the hinge

moment limit is actually 5.23 degrees. By allowing the rudder to reach the

values shown on the graph, the aileron was not required to exceed its nominal

hinge moment limit. Therefore, the aileron's hydraulic power would not require

beefingup if the rudder's hydraulic power were unlimited. The character of the

curve up to 90 seconds is the same as Figure 2-7, since the hinge moment limits

do not impact the solution up to that point.

Figure 2-10 is a plot of the thrust-drag losses versus time for the con-

figuration with and without TVC and with beefed up aero surface hydraulics to

give unlimited hinge moments on the aileron and rudder (stop limits remain

unchanged). The thrust-drag losses were lowest with TVC and highest with the

current aero surface hydraulics and no TVC. Of course this plot does not

reflect the weight increase required to hydraulically control the solid engines.

Nor does the chart show the weight cost of beefing up the aero surface hydrau-

lics. As might be expected, the losses were highest when the control power

approached its limits, on the no TVC case. It is easy to see that when the

control settings are dictated almost entirely by the trim requirements, little

can be done to minimize the cost function. Specifically, the high costs

occurred because the rudder reached its hinge moment limit and the orbiter

engines (primarily 6elY) were forced to take up the time slack. As long as

the orbiter engines were not required tovector more than two or three degrees

their thrust loss was very small (see Equation (16)). When they were forced

outside this range their thrust loss became significant. Furthermore the
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aileron was forced into the trim solution to counteract roll torques and the

aero surface drag loss was also increased.

2.3.6 Use of Control Devices to Eliminate Side Force

It was further desired to assess the ability of the control devices to

function as force canceling devices. The usual philosophy behind control

selection and placement is moment cancellation. Almost all of the report up

to this point has dealt with nulling torque disturbances while minimizing a

cost function (usually thrust/drag loss). This section imposes the.requirement

of zeroing side force as well as torques. Adding this requirement will theo-

retically cause the vehicle to fly the exact preprogrammed trajectory regard-

less of the disturbance.

It was stated in subsection 2.2 that zeroing side force was probably

impractical. However, it is impossible to tell the exact control limitations

using Lagrangian multiplier techniques. Since the Simplex algorithm will give

a solution if one is feasible, this problem was solved again using the new

technique.

Figure 2-11 shows the results of this study, using the mean crosswind

for the disturbance. As can be seen, the controls met the trim requirements

until around 65-70 seconds; at that time the control devices exceeded their

limits. The limiting devices are primarily the rudder and the solid engines.

When 624R and 6eL approached their 10-degree maximums they caused 6e4L and
24R. e5L e4L

6e5L to rapidly increase also. At some time between 65 and 70 seconds the

full control trim capacity was reached. At about that time the rudder also

reached its hinge moment limit. The limitations on one of these variables

cause the trim capacity to be exceeded. The aileron and the orbiter engines

do not limit the solution to the extent the rudder and solid engines do. The

orbiter engines appear to be well within their hard limits up to the time the

rudder and solid engines reach their boundaries. The aileron is increasing

quickly but it appears to be well within its hinge moment limit at 66-68

seconds.

It is interesting to note that the rudder deflection is negative for this

case. The rudder deflection was positive when only roll and yaw torques were
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being cancelled. This happens because the side force requirement dominates

the solution. The biggest need is for a negative side force, caused by the

wind, and the rudder furnishes part of that. On the other hand, the aileron is

positive instead of negative which it was in the previous cases. Apparently

the aileron, which has no effect on side force, is being used to cancel 
some

of the torques created by the deflections of the other devices and by 
the wind

torques.

Judging from the control trim limitations alone, it is evident that using

the control power to cancel side force is impractical. Other information

obtained from the study shows that this requirement is impractical from 
the

standpoint of thrust and drag losses as well. Figure 2-12 shows the losses

incurred by trimming the side force are very large compared to those incurred

from trimming the roll/yaw torques only (Figure 2-10). Note that the curve

seems to be increasing asymptotically as it nears the infeasible region. 
This

is caused by the lack of surplus control authority which limits the flexibility

of the minimization scheme. As it nears the limits of feasibility this curve

has the same appearance as the curve on Figure 2-10 which represents no TVC.

The two curves behave similarly for the same reason. When the trim require-

ments are very stringent, the minimization program has no room to adjust 
the

controls for minimum loss.

If the aerodynamic hinge moment were increased it would be possible to

trim the vehicle's side force. Although only one time point was examined (75

seconds) it was found that the solution at that point required about 17 degrees

of negative rudder and five degrees of SRM displacement. The orbiter engines

and the aileron were negligibly displaced compared to the rudder and solids.

Experience gained from the study indicates that all other time points will

trim if 75 seconds has a significant trim capability margin. Nevertheless, the

thrust-drag loss was around 200,000 newtons, which would seem to be unacceptably

high.

2.4 DYNAMIC SURVEY

In the study to this point the disturbance has been the mean crosswind.

In order to assess the interaction of the dynamics with the control system
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command distribution a quick-look dynamic response was generated for the

NAR configuration. This configuration was chosen because the simulation of

it was readily available. The data for this configuration are presented in

Appendix D. Also in this appendix is a block diagram of the dynamics model and

NAR control scheme. The disturbance was a synthetic crosswind with a gust of

7.5 m/sec superimposed on a 75 m/sec wind.

The results of the NAR simulation are shown in Figure 2-13. The commanded

control settings are the same as the actual control settings if actuator

dynamics are neglected. As can be seen from Appendix D, the rudder, 6 el and

6 e23D are used solely to control roll. Yaw is controlled by 6e23L and the

solids ( eL4 and 6 eL5 ) are controlled by feedback from both yaw and roll. The

torque outputs from these control settings were split into roll and yaw to

generate a time history of roll/yaw torque commands.

These torque commands were input to the simplex program.to generate a set

of minimized trim solutions. The results of the minimum thrust-drag solution

process are shown in Figure 2-14. The rudder is more active than the NAR

control scheme allows (no hinge moment limit was known or used). The top

orbiter engine (6el) receives a larger displacement and is yawed completely

to its limit by five seconds. The solid engines and 6e23D are slightly less

active than the NAR control scheme calls for. There appears to be no signif-

icant differences in the deflection of 6 .
e23L

The most striking result of this graph is the similarity in results

between the NAR control system and the Simplex method of torque command dis-

tribution. It is probable that NAR performed some similar sort of optimization

to determine their signal-splitting system.

Figure 2-15 shows the thrust-drag losses for the two control schemes.

The simplex scheme yields about 10 percent less thrust-drag loss. However,

this is offset by the fact that the simplex scheme places the top orbiter

engine on its limit at the time of peak disturbance.
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The penalty coefficient on orbiter engine one could be adjusted 
to move

it off its limit. Alternatively the cost functional could be modified to

penalize proximity to the control limits. This type of penalty function was

discussed earlier in the report.

2.5 FURTHER APPLICATIONS

There are several possible additional uses for this algorithm. On the

current NAR configuration there are still payload and load problems during

ascent. These problems may require changing the control system to resolve

them. The solution algorithm should give an indication of the way to proceed

in changing gains. and signal splitting. If soft limits are desired, the

algorithm could be used to generate position dependent control 
gains to achieve

the same purpose. Ultimately it may be possible to implement the system on-

board. The problem that must be solved here is computer time. It requires

three to nine matrix row or column operations to get from one flight state

to the next if the time change is small enough. This system would automatically

solve an engine malfunction problem, minimizing the deterioration in mission

capability.

The algorithm has several uses applicable to new configurations. If a

configuration does not have the control system defined, a typical torque com-

mand profile, such as the mean wind, may be used with the algorithm to compute

the settings of the control devices. This will give a preliminary control

assessment to determine if controllability problems exist and how to proceed

with signal splitting. If they are not already set, the algorithm can be used

to set engine cant angles at their most efficient values. Use of the algorithm

on problems such as these will add to the background and feel of the designer.
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Section III

CONCLUSIONS

* Lagrangian multiplier techniques may be used 
to solve quadratic cost

functions only. They also provide a method for blending the commands

to the control devices. However, the trim problems must be unbounded

for a solution to always be available.

* The Simplex based algorithm works for general problems. 
The cost

function may be of any form as long as it is piecewise 
differentiable.

The algorithm considers the variables' bounds explicitly 
in the

solution.

* The algorithm is most effective where there is adequate 
surplus trim

power to give flexibility to the solution.

* The algorithm can be used to solve problems 
such as "optimally"

trimming the shuttle ascent vehicle or the orbiter in reentry.

("Optimal" trim means approximately the optimal 
trim solution with

respect to a particular cost function.) It is also useful in obtaining

a feel for the trim range and an insight into the basis of 
signal

splitting schemes on the conventional Shuttle 
ascent control systems.

The algorithm may be used in flight if sufficient digital computer

speed is available. On-board it would solve the engine malfunction

problem automatically.

* The 049 ascent vehicle has controllability problems if the solid engines

are not vectorable. If the solid engines are used the controllability

problem vanishes. Without SRM TVC simplex shows that there is no

feasible roll, yaw trim solution between 74 and 85 seconds of flight.

With beefed up rudder hydraulics there is a solution.

* The dynamic survey performed on the NAR configuration showed the

simplex control scheme to be close to the results obtained from the

NAR control scheme. The simplex scheme saved about 10 percent of the

thrust-drag losses compared with the NAR control scheme.
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ENGINE FORCES AND MOMENTS

7 (D 9.34 m
6.68 m 6 Positive

eegZcg y

Centerline
of HO Tank ] 6ey Positive

z

Engine 1

F cos 180 6 force in Y
ey

1

(9.34 + Z )F cos 180 6 roll
cg ey1

-X F cos 180 6 yaw
cg ey1

where Xcg, Zcg > lengths
cg cg

Engine 2.

F{cos 120 cos 3.50 6 + sin 120 sin 3.50 6 + cos 120 sin 3.50}

ey2  ep2

(6.68 + Z cg){Y force} - 1.345F{sin 120 - cos 120 6 }
cg ep2

- X F {sin 12 .
0 sin 3.50 6 + cos 120 cos 3.50 6 }{yaw}

cg ep2  2ey
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Engine 3.

F{cos 120 cos 3.50 6ey 3 - sin 120 sin 3.50 6ep 3 - cos 120 sin 3.50} (Y force)

(6.68 + Z cg) (Y Force) + 1.346F{sin 120 - cos 120 6 } roll
cg ep3

- Xcg F {-sin 120 sin 3.50 6ep3 + cos 120 cos 3.50 6 } yaw
cg ep3 ey3

A ventral fin was added to the configuration to improve the aerodynamic prop-

erties in the region of max q. It significantly reduces the yaw and roll

moments due to side slip. This effect is accounted for by direct addition

of AC , AC and AC to their respective terms in the equations.
N yL
p Y -

A-2



TR-1246
NORTHROP SERVICES, INC. T-2

DATA

2
FLIGHT NEWT XCG NEWT/m A f bref NEWT

TIME THRUST/ ZCG XCG DYNAMIC m r m THRUST/SOL.

SEC ENGINE m m PRESSURE

25 1.65 x 106 -1.58 23.345 .482 x 104  3.177 x 102  2.832 x 102 1.28 x 107

40 1.76 x 10O6 -1.5847 23.42 .987 x 10O4  1.12 x 107

50 1.825 x 106 -1.5914 23.47 .134 x 105  1.137

60 1.885 x 10O6 -1.5953 23.52 .174 x 105  1.157

65 1.92 x 10O6 -1.5979 23.545 .194 x 105  1.166

70 1.94 x 106  -1.60 23.57 .212 x 105  1.175

75 1.97 x 10O6 -1.4626 24.13 .226 x 105  1.183

80 1.98 x 106 -1.455 24.18 .233 x 105  1.192

90 2.025 x 10O6 -1.440 24.33 .217 x 105  1.205

100 2.04 x 10O6 -1.4327 24.535 .165 x 105  1.213

110 2.06 x 106  -1.4255 24.74 .117 x 105 1.216

64
145 2.07 x 10 -1.400 25.62 .231 x 104  1.0
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DATA

/

400 FT2 - FIN DATA IS PER/DEG

FLIGHT AFT FORWARD
TIME ACma AC1  ACm ACyB

25 .0064 .0031 -.004 -.011

40 .0067 .0032 -.0044 -.012

50 .0074 .0033 -.0048 -.013

60 .0085 .0036 -.0056 -.015

65 .0094 .0038 -.006 -.016

70 .014 .0042 -.006 -.017

75 .01 .0042 -.0058 -.0165

80 .0088 .0035 -.005 -.014

90 .0075 .0027 -.0044 -.0105

100 .005 .0017 -.0028 -.008

110 .004 .0014 -.0022 -.006

145 .0028 .001 -.0015 -.004
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0
DATA 1

TOTAL GRAVITY WIND (DEG)
FLIGHT VELOCITY Uo Wo Cos e Sin a g MACH # VELOCITY C <

Pw TIME m/sec m/sec m/sec o  o  m/sec 2 m/sec D8

cl1

U

VR M

a

1.20 25 .954 x 102 .954 x 102 .279 -.012 1.0 9.8 .28 2.0 .0007

3.4°  40 .150 x 103 .149 x 103 .165 x 102 .050 .999 9.8 .44 9.0

4.5 (4.6) 50 .190 x 103 .186 x 103 .340 x 102 .125 .992 9.79 .56 15.0

5.7 (5.9) 60 .241 x 103 .232 x 103 .654 x 102 .222 .975 9.78 .707 24.0

6.1 (6.5) 65 .272 x 103 .257 x 103 .875 x 102 .274 .962 .8 29.0

6.4 (6.9) 70 .305 x 103 .283 x 103 .115 x 103 .329 .944 .9 34.0

6.7 75 .343 x 103 .310 x 103 .148 x 103 .384 .923 9.77 1.01 40.0

6.5 80 .385 x 103 .337 x 103 .187 x 103 .449 .893 1.13 44.0

3.53 90 .486 x 103 .392 x 103 .288 x 103 .566 .824 9.76 1.43 30.0 .007

0 100 .612 x 103 .445 x 103 .420 x 103 .664 .748 9.74 1.8 0

110 .768 x 103 .498 x 103 .584 x 103 .681 .732 9.73

140 .152 x 104  .673 x 103  .126 x 104  .874 .486 9.68
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DATA

FLIGHT C C CC C 0

TIME Sr Sr Sr Cm C

25 .273 .504 -.510 -.283 .302 -1.66 -.203 x 101

40 .265 .408 -.489 -.285 .315 -1.68 -.512 x 10 - 2

50 .259 .462 -.473 -.286 .325 -1.70 .450 x 10-2

60 .215 .394 -.388 -.291 .404 -1.83 .112 x 10- 2

65 .181 .319 -.310 -.298 .468 -1.99 -.158 x 10-1

70 .173 .300 -.345 -.326 .460 -2.05 .687 x 10-1

75 .206 .292 -.340 -.384 .344 -1.97 -.103

80 .186 .217 -.254 -.356 .266 -1.92 .412 x 10-1

90 .105 .132 -.137 -.299 .238 -1.93 -.277 x 10- 2

100 .055 .961 x 10-1 -.105 -.246 .269 -2.03 .301 x 10- 3

110 .0406 .749 x 10-1 -.077 -.196 .207 -1.98 -.851 x 10- 2

145 .0286 .573 x 10-1 -.061 -.122 -.0284 -1.60 -.100 x 10 - 2
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DATA

FLIGHT C C MASS Ix 2 Iz 2

TIME mSa Sa Kg Kg - mKg - m

25 .0458 -.0430 .218 x 107 .953 x 108 .591 x 109

7 8 9
40 .0444 -.0458 .201 x 107  .856 x 108 .547 x 109

50 .043 -.0487 .190 x 107 .794 x 108 .519 x 10

60 .0358 -.0544 .179 x 107 .733 x 108 .491 x 109

65 .0344 -.0630 .174 x 107  .702 x 108 .478 x 10

70 .0301 -.0630 .169 x 107 .671 x 108 .464 x 109

75 .0258 -.0544 .160 x 10 .629 x 108 .420 x 10

80 .0244 -.0458 .154 x 107 .606 x 108 .405 x 109

90 .0172 -.0286 .144 x 107 .559 x 108  .375 x 109

100 .00286 -. 0215 .133 x 107 .512 x 108 .346 x 10

110 -. 00286 -. 0158 .122 x 10 7  .466 x 108  .317 x 109

145 -.0114 -.00859 .914 x 106  .329 x 108  .228 x 109
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DATA

<K a (INCLUDED ANGLE)

RUDDER HINGE AILERON HINGE
FLIGHT MOMENT LIMIT MOMENT LIMIT
TIME DEGREES DEGREES

25 No Hinge Moment Limit (30) No Aileron Limit

40 42 (30) 71.8

50 30.8 (30) 52.6

60 23.5 40.0

65 14.7 25.1

70 8.19 14.1

75 5.54 9.47

80 5.23 8.91

90 6.27 10.69

100 10.23 17.5

110 19.67 33.64

140 No Hinge Limit No Hinge Limit

Hard Limits Hard Limits

(±300) (400 up - 150 down)

The hinge moment limits are a function of dynamic pressure and as such

would change with trajectory variation. However, this data assumes a nominal

ascent. In addition, I have included the hard deflection limits which govern

when the hinge moments do not. I do not have any data for it yet, but there

should be a yaw introduced by unequal aileron deflection.
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The simplex algorithm is a well known algorithm for solving linear,

bounded problems with linear cost functionals. It is uniquely suited to the

trim optimization problem since simplex solves the problem of more variables

than constraints and also handles explicit inequality constraints. The orig-

inal simplex algorithm is as follows:
o

1. Examine the a., j = 1, ... , n-m.o

a. If all a. > 0, the solution is optimal.J

b. If some a. < 0, choose j = s by a = min a. < 0.
3 s 3

i
2. Examine the a , i = 1, ... , m.

s

i
a. If all a < 0, the value of Z is unbounded in the class ofS

solutions given by (7).
i

b. If some a > 0, choose i = r by

i ib. b r
min a > 0 - - - > 0 (b > 0)

s a r
s a

s

3. Using ar for a pivot, perform one elimination to obtain the news

canonical form.. The elimination is applied to the right hand side
to give the new values of the new basic variables and an extra E.R.T.
applied to row zero to give the new relative cost factors. The new
value of Z (with sign changed) appears in row zero of the right side.

4. Return to 1.

B-1
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It can be shown (ref. 2) that if a feasible solution exists, we can obtain

a basic feasible solution. Applying the simplex algorithm to this solution,

assuming Z is bounded below, we either prove the solution optimal or obtain an

i i
improved basic feasible solution, provided all b > 0 for asi > 0. Thus we can

5

never return to a previous solution since each one has a lower value of Z than

the preceding one. But there are only a finite number of basic solutions (not

exceeding the number of combinations on n things taken m at a time) so that we

must eventually arrive at some best basic feasible solution. But this must be

an optimal solution or we could repeat the algorithm. Hence there exists a

basic feasible solution which is optimal. This proves that if any feasible

solution exists and Z has a finite minimum then there exists a basic optimal

solution. Furthermore it shows that the algorithm is a finite iterative pro-

cedure, i.e., we arrive at a solution in a finite number of steps. This is

also clearly true if Z is unbounded below.

Finding A Basic Feasible Solution - The number of linearly independent

rows of a restraint matrix is called the rank of the system. If the rank p is

less than m, then either there are m-p redundant equations or else there is no

solution at all, feasible or otherwise. If the rank is m, then there is some

basic solution but there may be no feasible solution. Hence, given a problem

there is, in general, no way of knowing whether any solution exists.

To overcome these difficulties, a very simple device exists which either

finds a feasible solution or determines that none exists. It also induces

rank m in case p < m. The idea is to embed the given problem in a larger

system and solve a preliminary LP problem before attempting to-minimize Z.

This process is called Phase I of the simplex method, the optimization of Z

being referred to as Phase II.

We suppose that all b i > 0. (If not, the entire equation for b t < 0 can

be multiplied by -1.)

We now define m artificial variables

n+l n+2 n+m
x >0, x > 0, ... ,x >0
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n+m+l

and x n+m+ which will eventually be restricted to be non-negative. The co-

efficients of these variables will be new vectors arbitrarily adjoined 
to the

n+i

restraint matrix. The coefficient of xn+i will be unity in row i and in an
new

added row w, zero elsewhere. Letting m + 1 = w the variable x will have a

coefficient only in row w. The system of restraints is now

w n+i (B-l)Sx = 0

i=1

I i x n+1 b (i 1, ... ' m) (B-2)

j=l 3
n+l

Since the x n+ are artificial, they must not appear in the final basic solu-n-w

tion, except perhaps at zero level. If xn+w > 0, then (B-l) guarantees that

they are all zero since a sum of non-negative numbers equal to zero implies

each is zero.

n+i

If the x = 0, then clearly (B-2) is the same as the original restraints.

Note that the rank of the system (B-l), (B-2) is m+l. This is clearly seen by

displaying the entire expanded tableau:

1 2 n n+l n+2 n+m n4w
x x . . .x x x . . .x x

ao o a. .. ao 0 0 ... 0 Z
1 2 n

1 1 1 
1

a 1  a 2 . . .a n 1 .. 0 b,

aI  am . . am 1 . . . b

1 2 n

al. , .a . . *

0 0 . . . 0 1 1 .. . 1 1 0 (B-3)
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Although (B-3) is not quite in canonical form, there is an obvious starting
n-f

solution if we allow xn+w to be negative, namely:

x = 0, j = 1, ... , n

m
n-+w - b

x = - b

i=1

xn+i =b , i = 1, ... , m. (B-4)

The solution (albeit infeasible) will remain valid of we apply the following

E.R.T:

w =w -1 w w
a. = a. - a. (j = 1, ... , n+m), b = bw - b

i.e., if we subtract Equation 1 from Equation w. We can then subtract equa-_._w

tions 2, 3, ... , m in turn from Equations w. If we redefine a and b as

m
W I

a. = aj (j = 1, ... , n+m)
3 i=1

m
b = - b

i=1

the result is the following tableau:

1 2 n n+l n+2 n+w
x x . . .x x x . . . x

- O O O
a a2 . . . an 0 0 . . Z

1 2 n

1 1 11
a1  a2 . .. a 1 0 . . . 0 bI z n

2 2 2 2

a1  a .. .a 0 1 .. . b2
1  2  n

w w w w

1  2  n 0 0 (B-5)
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which is in canonical form except that b < 0, and hence x < 0. The first
n~w

objective will therefore be to maximize x . Zero is clearly an upper bound
n--w

for x by (13). On the other hand, any feasible solution to the original
n+i n

problem would leave all xn+i = 0. Therefore if max xnw < 0, there is no

solution to the given problem.

From Equation w in (B-5), it is clear that maximizing xn+w is the same as
n

minimizing F = a~ x since their sum is a constant,
j=l 3

nw w
x +F= b

w

Hence we simply use the a. for relative cost factors in Phase I, carrying along
o n+w
a. to be ready for Phase II if and when x = 0.J

n+w
During Phase I, maximizing x , its column of coefficients must never be

a candidate for elimination.

It is not possible to eliminate all the artificial variables from any

basic solution even in Phase II. For even if the m original restraint rows
i

a. (i = 1, ... , m; j = 1, ... , m) were linearly independent, row w is a linearJ

combination of them and hence the m + 1 rows for i = 1, ... , w and j = 1, ... , n

are linearly dependent. Hence at least one artificial column must always remain

and we have insisted that column n + w stay in during Phase I. If, however,

the original m rows had rank p < m, then m - p + 1 artificial columns will
n+w

remain at the end of Phase I. If x = 0, the solution is a valid one; if
n-I-
x n+w < 0, there is no solution.

n~w
Degeneracy may also cause xnw to reach zero before the other artificial

wcolumns are removed from the basis. In this case, some of the a. may still be
n+w J

negative. Thus Phase I should be terminated when either x = 0 or when all
w

a. < 0, whichever happens first.
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It is possible that xnw will be eliminated in Phase II if some other

artificial column is still in the basis. Whenever any artificial column is

eliminated from the basis, it is simply dropped from further consideration.

If the original restraints contained some legitimate unit vectors, then

the corresponding artificial columns need not be added and the corresponding

rows are not subtracted from row w.

B-6
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This appendix is a listing and description of the computer program

developed to solve the problems in this study. Figure C-1 is a flowchart of

the calling sequence for program SMPLX.

DATRD is the program that reads the data and calculates the control

devices' stability derivatives. This program also reads in such things as

penalty coefficients and initial solution and starting range. The program

can be started with a zero vector for the starting solution and 100 percent

range to insure a feasible solution if one is available.

Then the program enters SIMTM which calls all the subroutines that

calculate the solution. For the first pass the partial:costs are set

(subroutine "cost" calculates ) at the initial solution, the temporary

bounds are set up about that solution and the simplex tableau is set up and

solved. This gives the minimum cost sum (subroutine SCOST) on the temporary

range if the costs are linear enough on that range.

On subsequent passes CVARB calculates the actual variables from the

simplex transformed variables, TORQ calculates the sum of the variables

times their coefficients and the disturbance, and SCOST calculates the

actual total cost so that actual improvement can be discerned. Then the new

cost is compared to the old cost and if there is no improvement the bounds

are squeezed by half (SQZ). If there is improvement the new partial costs

(SCOST) are calculated at the new solution. Then the new temporary bounds

are set. Subroutine SETUP puts the problem in simplex form and SOLTN solves

it. The improvement criteria is then checked and if it is fulfilled, the

program loops again.

The only things that require change to solve a different problem are

COST and SCOST, and then only if the cost function changes form from Equation

(16). SCOST represents the total cost and if the form is changed, then the

cards from "TCOST = 0.0" to "RETURN" must be altered according to the actual

cost equations. Then in subroutine COST the partial derivatives of the total

cost equation, evaluated at the current solution, are calculated. To change

COST, simply remove the cards from "18 CONTINUE" to "DO 22 I = 1, NVAR".

C-1
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DATRD

II y COST

N

CVARB

TORQ

SCOST

SIMTM
NEW <N SQZ

OLD w)

COST

EIMM
SETUP
SOLTN

y DELT >
5 x 10-4

N

STOP

Figure C-1. CALLING SEQUENCE FLOWCHART OF PROGRAM SIMPLEX
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The number of variables in the problem is represented by Fortran mnemonic

"NVAR". The number of equality constraints is called "NEQ". These must be

changed if the problem size changes. The program is dimensioned for a maximum

of three equations and 12 variables.

An input description is listed below:

CARD

FORMAT(5E13.4)

1 YEl ZE1 PAE1 YAE1

2 YE2 ZE2 PAE2 YAE2

3 YE3 ZE3 PAE3 YAE3

4 YE4 ZE4 PAE4 YAE4

5 YE5 ZE5 PAE5 YAE5

(YEl is y position relative to cg of engine 1, ZE2 is z position engine

2, PAE3 is pitch angle engine 3, YAE4 is yaw angle engine 4)

FORMAT 13

6 TIME (time of flight)

FORMAT (5E13.0)

7 THR, ZCG, XCG, AREF, BREF
2

(orbiter thrust per engine (nt), ZCG 9m), XCG (m), reference area (m2 ),
reference length (m))

8 QBAR, 6, MASS, IX, IZ
2 2

(dynamic pressure (nt/m ), gravity (m/sec ) mass (kg), x axis inertia
(kg m2 ), z axis inertia (kg m 2 )).

9 THRS, DELT

(solid engine thrust per engine (nt), initial solution range, rates
of full range 0 - 1.0)

.10 (DlMAX(I), DIMIN(I), I=1,NVAR)

(maxima and minima for each variable one at a time)

11 DCCB, DCNB, DCVB

(A 6 AC, AC )

12 CLB, CLDA, CLDR

(C , C , C )

a R

C-3
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CARD

13 CNB, CNDA, CNDR

(Cn ,C , C )

a R

14 CYB, CYDA, CYDR

(C , C , Cy )C6a  6R

a R
15 (TC(I), I=1,NEQ)

(disturbance torques and forces aside from wind)

16 BETA

(wind velocity divided by vehicle total velocity)

17 (PC(I)), I=1,NVAR)

(penalty coefficients)

18 (A(I,KKK), I=i,NVAR)

(initial solution vector (temporary location))

C-4



D4nF 001

/*SHARD X368 0250

/1FOR
*0N)'\F WORD INTFGFRS
*IflCS(1 132PRjNTER9CARD)

C PROGPAv rDATRD ( C 3Cof,)N!W ,'E-)t,C'V *DELT ,NPASS)
IXNTFGFP TPl'F
REALMvASSolXoIZ ________

COMMON A(179?6) ,W1(17) ,L(17) 91 IoJJII 9 T W
COMMON DIMAX(12)DI'-IN(12) #PC( 1 221) 12 - ----- __

COMMON F:IMAX(12),ErMIN(12),C(3,13),TC(3),DE L-TTC5TCOSTIC,:jSf2
DATA NP;2/il95W!/3/ oNEQ/3/*CNV/57,2957795/,NVAR/12/ __

COSTI =10O0000.
COST2=1000nn. _____

:NVAR1 =NVAR+1
L_(10)=_50______ _____

READ CNR,?OO) YE1,ZE19PAE1,YAE1
READ (NR#2on) YE29ZE29PAF2#YAE2
RE.AD CNR920O) YP3,ZE39PAE3#YAE3
READ (NR9200) YE4*ZE49PAE4#YAE4 _____

READ (NR9700) YE59Z.E59PAE5tYAE5
READ(NP.10n0 TIME
READ (C\199701) THR9ZCG#XCGAREFFBREF
READ (NRo?01) 0RARvGvMASS, IX9IZ
READ(NO92n1) THRSDELT
READ(NP.2f1) (DIMAXC I) ,DIMINC I) 91=19NVAR)
READ (NR,201) DCLBDCNB.D(YB
RFADINP*2011 CLB*CIDA*CLDR
READ(NR9201) CNRoCNDACNDR
pFAntNRt.7r)l CYR*CYrBAaCF)R

PEAD(N',R9201) (TC(I)9I=19,NEQ)
RFAfltNP.Pn1) RFTA

FZCCG = (ZCen+1*47)/F3REF
cxrcl = (XCC,-21,6)/RRF
nS = QPAR*AREF
0SF3 = 0.S*RREF

C
C COMPUTPS INDIVIDUAL ENGINE DERIVATIVES
C ENGINIES 1.? AND 3 ARE LIQUIDS (ORRITER)

C FNGINES 4 AND 5 ARE SOLIDS (SRM)
C ENGINE 1 PITCH DOES NOT CONTRIBUTE TO LATERAL FORCES AND NYOMENTS
C

TEMP = PAFl/CNV
CPFI CnS(TENIP)
TEMP = PAF2/CNV
CPE2 =COS(TEMP)

SPE2 = SIN(TFfvP)
T EMVP =PAF3/CNIV

CPF3 =COS(TEMvP)

SPE3 =SIN(TEMP)

T EMP = YAF2/CNIV
CYE2 =CnS(TEN.IP)

SYE2 =SIN(TEMP)

TEMP = YAc3/CNV
CYF3 = COS(TEMP)
SYE3 = STN(TENIP)__
TEMP = YAcE4/CNV
CYE4 =C05(T!7MP)
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pAnp 002

TEMIP = YAPE,/CNV
CYF5 = C0OSCTrNP)
CflFlP = -1Ifl*XCCG*THR*CPEl/QSR
CL~lY = (Z71+ZCG)*THR*CPE1/,'SR
CNElY = -l~o*XCG*THR*CPF1/QS8
CLF20 = -(YE?*CPE2 + (ZCG+ZE2)*SPE2*SYE2)*THR/QSB
CNF2D = -1.O*XCG*TRR*SYE2*SPE2/QSB
CvE2P = -1*O*XC.G*THR*CPE2*CYE2/QSB
CLF2Y = (7F2+ZCG)*THR*CPE2*CYE2/QSB
CNE2Y = -1*0*XCGi*THR*CPE2*CYE2/OSB
CME30 = -11 O*XCG*THR*CPE-3*CYE /QSB

CLE3P =-(YE3*CPE3 + (ZCG+ZE3)*SPE3*SYE3)*THR/QSF
CNE3P = -1.O*XCG*THR*SYE3*SPE /QSB

CLElY = (ZE34+ZCC,)*THR*CPE3*CYE3/QSB
CNE3Y = -1*0*XCG*THR*CPE3*CYE /QSB

CLE4R =Oo707*THRS*(-YE4-(ZE4 +ZCG)*CYE4)/QSR

CLE4L = 0&7O7*THRS*.(-YE4+(ZE4 +ZCG)*CYE4)/QSPB
CME4R = -0*7O7*XCG*THRS*CYE4/QSB
CLE5R = 0,707*THRS*(-YE5-(ZE5 +ZCG)*CYE5)/QSB

CLE5L = O.707*THRS*(-YE5+(ZE5 +ZCG)*CYE5)/SB3
CME4L = CMlE4R,
CNE4R = O.707*XC6*CYE4*THRS/OSB
CNE4L =-Oo7O7*XCG3*CYE4*THRS/QSB.
CME5P = no.7O7*XCG*THRS*CYE5/QSB
CNE5R = 0@707*XCG*CYE5*THRS/QSB
CNE5L =-O.7O7*XCG*CYE5-*THRS/SF9
CMF51 CMF5R

C CO~lrUTES MOMENT COEFFICIENT RELATIVE TO VOI1ENT REFEREN1CE POINT

C

C

C~l 91) = C'LR + DCLR + CYR*FZCG

C(192) = CLFDA
I al I = Ci D + CYflIR*F7CG

C(194) = 0.0
CC1*.5) = Ct FlY
C(196) = CLE2P
CC 1.7) = CLF2Y
C(19P) = CLF3P

C(1-)10)= CLE4R

C(1912)= CLF5R
C(1913)= CLE5L

C
C(291) = CNR + DCN8 CYB*FXCG
C(292) = CNDA

CC2,4) = 0.0

C(296) = CNF2P
C(27)= CNF2Y

C(2,e) = CNEIP
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C(2,10 )=CFLP
C( ,11) =CIF4L
C (2 tl )=0NFSP

C(2 1 3 )=Cl1r*L
C.
C(3,1) = r0
((3,3) = 0.0
C(3,3) = 0.0
C(3,4) = 0.0

C(96) = CVF22P
C(1,7) = .O

.( P) = C13P
C(3,!) = .fn
(310 )=C4F4r

C 1 11) CNIPE4L

C ( .12) =CFPR
C( ,13)= CvF-EL

00 4 _ = o,_3FTA
TC(I ) = TC(v) - C(K,1)PFTA
Co (0TINUFC CIN'T I ! l

E.Ar( NR ,201) (PC(I) ,I=' VAR)
r? AD(N.?, 2D1) (A (I ,25) 9I =1, NVAR)

I TE (Nw, - on) TIUME
RI TF('1W 2,03) D IMAX

.RITF(' ?,7r) DIMIN
RI TF ( q.. 99
RI TE ( NW 501 )

IAfPITF( NIW,202) (C (1 , ) 11,8)
WRITF ('W,522)
RITE (NW,?._03) C ( 1,1 ) 1 =9,NVARI )
*RI TE( , 50?2)
,RITF( .203) (C(2s,1),I 1=1, )
Q I TF ( . 523 )

wRITE (N .,?03)(C(2 , 1)91 =9,VAR1)
I TE 5 ? 03)

' ITE( V',203) (C (3,) I= 198 )_
'R IT ( .! 9524)

IRTQ (NWr !?0; (C(3. ) I T=9,NVARI)
0. I TE ( , 02?) (PC( I)1=1'NVAR)
.ITp ( ,,_ .'I,) (TC(_ ,T I=1,NEQ)

CALL LIN' (SIMT', )
99 ORvAT(2X.//*54H LATFRAL NON-DIiENSIONAL 5TAILLITY D*tIVAV S1/
1ADV )

,- OR4AT ( I )
2n' 0P~-'AT(5E13.4)

201 FORVAT ( 5F 1 I 0)
?12 FORMAT(8F13.3)
203 FORM AT(8F13.3)
100 FORNAT(1H1l,/,10X*8H TIME = ,l3,5H SEC ,///)
501 FORMAT(// ,5X,5H CLB ,98XS5H CLAr)ASXeH CLDR 3X,

16H CLE1P,7X,6H CLE1Y,7X96H CLE2P,7X,6H CLE2Y*7X,6H CLE3P)
502 FOrMAT(// ,SXC5H CNB 8X,5H CN!0A,8X,5' CIDR,3X,

16H CNF1D,7X,6H CNE1Y97X96H C'E2P,7X,6H CNE2Y97X,6H C"E3P)
503 FORMAT(// 95X,5HCMALP98X,5H CVDAS8X,5H CMDR,3X,
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PAGF 004

16H C"E 1P 97 X,#6H CMF 1 Y97 X 6 H CME 2 P 97 X 6H CNIE 2Y 7 X,96H. CN F3 P)
522 FORMAT(C//,5X,5HCLE3Y,%9X,5HCLFL , X5HCE4LPX5C't§ -r-,0 X ,5ThCLE5L)
923 FORYAT I C C R98X- CNE4L98X95H ,1 R99X9 '5 CN -
5?4 FOPMAT(//,5X,5HCME3Y8XSHCE4P98X95HCME*L8'X,5H CA15R 9 X95HCtE 5 L)

END
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DACEF 1 3.65

// JOR T 3865

LOG DRIVEF CAT SDEC CAPT AVAIL PHY DRIVE

Dr0C anO2 0002 0000

'" V1O ACTUAL OK CONFIG SK

// *SAP X36 25

// FCo
*IOCS( 1132PRINTF'?9CARD.)
*O'E wrRD INTEGERS
*ARITHMETIC TRACP

*LIST SOURCE PROGRAM
C OROGRA ., SIMTM
C LINEAR PROGPAMM,,ING FOR 1130 -- DATA LOADER OHASV

c c ( 3*13) =. COEFFICIENT MATRIX

C TC (3) = MO2ENT COM"AiDS
r DC  (12) = PENALTY COEFFICIENTS

rDI."FNSTION D(12)
COMMONc A(17,26) ,W(17) L(17) III ,JJ9I I 1IW

CO .... ON DIMAX(12) DI I N ( 12) ,PC(12) ,D (12)

Co'-O! EIVAX( 12 ) ,EIMIN(12), C(3 13),TC( 3) ,DELT L ,TCOST C S ,C ST2

DATA NW/3/,NVAR/12/
DATA C'!\/57.2 "9 5 7 8 /

NVAR 2*'NVAR .+11W = 2,} V

C
C C.OMPUTrS VALURS OF CONTROL VARIAFLF

IF(L(1O)-5t) 7n,71,70
71 CCONTI NL'

CALL CCST( DDDIMAXDIMI NqAPC)

r)n 52 T=1&NVAR

D() = I= I r VA )

52 CONT I NUE
TCOST = 1 Oon o00000 n'nono-

COST1 =l)OOO00000000.
0 TO 72

70 CONTINUE

CALL CVARR(LNV.ARP ADEIMIN,\EIMAX NVAR1)

CALL TORQ( NVARpCDTCROLLT,-YAWT9PITT)
CALL SCOST COST2 ,COSTTCOST ,D PC 9CNV D I AX 9 1MI ,'4 NVAR)

72 CONT TNl.i
C

I.F (COST1-TCOST) 85 985986

P9 CONT IEF
wRITE(NW,202) TCOST
MN=I
TCOST = COST1
CALL SOZ (DELTTCOSToCOST1)

10 TO PR

P.6 CONT I NUE
DO 87 I=1,NVAR
DD( I)= ( I).
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7
.7 COiT_ _ UE

CALL COST( D INMAXD I M IAPC)
-L P C -0%lI I JF

C ro/DUTFS .IAX EI I FOR NFxTP~'T P 1S
CALL (EIAX E Iv V R D EL I X, I,I I )
IF (Vr',) 60 ,60 61

6T C O IT I 
_ _._

WR I TF("W 02) DD
,RITF(YW,' ?) ROLLTYAWT PITT TCOSTCOST1,C(S 3T2 F T

61 CONTI ;, E
CALL SETUP (FIMAX, E I VI,1NiVAR ., C,, TC. A ,L. VA IIJJ I i
CALL SOLTN (NVAR1,NVAR*D)
IF (DELT-r.0005) 70970,73

73 CALL EXIT
02 FOF 2,'AT (PF 13. e 5 )

50n4 FOW:-AT(1H 99X921HCONTROL TRIM SETTI GS/QX,62AILA" LEEG
1YA, ,F'S 2/3 PITCH/YAW9,ENGS 4/5 RIGHT/LFFT)

-ATURES SUPPrRT F-
APITHMETIC TRACE
ONE WORD ITEGFRS
I0CS

C,?. REQUIREVENTS FOR

C0,Vr),N 1176 VARIABLES 40 PROGRAM 322

END Oc CO"DILATION,

// DUo
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// r)D

Y'JPU T I~ SQZ F) FLToTCOS-lT9TEf-0D
A=ARS( rEM'D)
Q=APS ( r)ST)
A= ( A-fl) /A

15 IF(A-rDeLT) oo,1O920
I'l CONT I NuE__ _ _ _ _ _ _ _ _ _

DELT=0*5*DELT
2C CON I NUE

R E T '.R~NI
ND
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TF 5 UJA SQL
/ r,.)

n-F 'OR) INTEC'FS

SURROUT I NF SETUP(E IMAX ,EI VIN NVAR C ,TC A , ,L , NVA R " ,II JJ'iI )

D I .FNSI ON FIVAX(12) EIMIN( 12) 9C(3,13) TC(3) ,A( 17,26) . ( 17) .L(17)

DI"ENSION ~HS(3)
PHS(1) =0.0
PHS(2) =0,0

P HS ( 3 )=0 0
11=16

JJ=25
DC 62 T=,1NVAR 9 -

.J=I+1
P4S(1) = r S(1)-C( IJ)*EIIN (I) 1
. S S(')=-R~ ( )-C(C? J) F I I (I

62 R S i (2) = 1 HS )-C (2,J ) EI' MI N(I)
r iS(1)= TC (1)+R"? S( 1)

P S (2)= TC(2)+RHS(2)

?HS(3) =TC ( 3) +PHS ( 3)
SI, , = RHS(1)/ABS(RHS(1))

I N2 = ,S(?")/ARS( FHS(2))

SIGN3=rHS( 3)/ABS(RHS( 3))
A(19,NVAR1) = 0.0,
III=1I+1 13LPROG

0)0 1010 I=1,IIl 14LPROG

w(I )=0.o 15LPR'GG

L(I)=0 16LPROG

101') CONTINtJF

DO 100O9 K=2,III
00 100Q J= 1,JJ
A(kJ) = .0

i("c09 Cn,,T I NHF
D00 47 I=1.NVAR
= T+1

A(2,I) = C(1, )*SIGN1
A(3.T) I C(2,K )*S I GN2

A(4,1)=C(3 , )*SIGN3
47 CONT I .tif

A(2,9NVAR1)= RHS(1)*SIGN1
A ( , *NIVA'AP 1) = RHS ( 2 ) 4,S I7'! 2
A(4,NVAR1)=PHS(3)*SI.N3

RELATION OF TRANSFORMED VARIABLES ,SLACKS
AND CONTRO)L LIMTTS

DO 48 K=1I'!VAR
V I =K+4
j= k,+NvAP

L(KI) = '<J
A(, I ,< ) =1.0

4P A(KIKJ)=1.O

00 46 I=1NVAR

J= 1I+4
46 A(JNVARI) = EIMAX(I)-EIMIN(I)

W..RITE( NW, 1004)
1o4 .FORMAT(12H DATA LOADED) 11LPROG
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PET URN'

FC-13
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DI " 'T0 ~'~ U SETU -l

I T '.1? =T1
COST 1TCCoS 2CST T "

25 TCOST. Tr-STP I*R

DO 26 1=19 1

21S TCOST =TCOST+CCos~~()

RE ET ',.R N
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*mIE * INTEWGFRS

*,trLTPHFTIC TRACF
SURiPOLJT I'-I COSTC(D.,r)I NAX F P 1I N ,APC

r) ATI C\!V/57*29578/__ 
__________

1)0 1P I =1,NVAR

A I , +N! r )

A ( I ,A-) F( 
__________________

(1 41T ) = PC(IT)*r)IT)/ARS(D(IT))

DOC 20 IT=3 ,,VAY 92

TT 1 1 C IT+ 1T1 F

2C, A (I T) =(IT) *D (IT) *S

EN )
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P4(-, 01 1

1/ CU 11
*,STOF iIR c JA SCOS;T

0 N F 1. r I T TErS'
SUmf CUTTNP TOPO(NVARCD' TCRCOLLTYA4,TPITT)

D)IV'P.NS I ON C ( 3,3 , ir)( 2 ,T C 3

ROLLT=0*0_ 
_ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _

00 73 I=19NIVAfP

J = 1 + 1 
________

-?CLLTPr'OLLT+C.(1,J))*)( I)

PITT=P~ITT+CC3,J )*D( I) _______

73 YAW, T=YAWlT+C (29J ) *)( I)

rCA.L T R0.LI T -TC (1 I_
Y A,-:T = Y ~T- TC( 2)
0lTT~rITT-TCC3)

F T______'
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LT-0

= IV
V/q*(I)XVjl- = (I)XVAI.:

19609 '09 U-v) -

( (F~cI~IS3*(r)N9I~4-( (I)I~ I" I". I~.O = (I )N9

V/ ~ ~ ~ ~ ~ 1 r * VV IO

V/I-* X9'9,'9. I)XAI v I

(I ~ l NNI~ (1 )Nik.I T'
T 1,; -0- (CiJ.LJ -A I

(I)XV~J1= =^3. dIX'I

8iVAN'Tl T a OC

D

((I w~IC-(I )XVvj I a *l~C-( I )(IC I J/\.
I )N~IGCI )V,~I)*i.~G+ I (.~C = I ) X.I

ciVA'1
1L9 OQ

Z T 1) 1'I.! 1 XV 1 I ( Z I ZTC (~ NT 1~ J' C Z I )Xvf %I 3 NJOI SI.v I Ci

S b J~-])31i. I U~J~ jvl U i

6C3 )
C)~JOI V



STOr. • S UA EIR' 
/ / F.")- _ __ __ _

0 'F .. . I :TEGFr
S,);-RP, "IC( , C (AR L, AP A . D IM I r , I AX ,,VAR 1)
DI"FMSTO '. L(17),A 17,26),D(12),FIMIN(12),FIV. AX(12)

I 'VAR+3
DC 55 J=1 I
K J+1
M=L(' )

I) F R 5 6 7 4
, D(') = A( ' , VAR1)+FI IN(' )

74 ' V- VA

( ) FIVAX(')-A (KNVARI)
9 CO NIT i " !E

,:IF TU" "I
N r)
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.PA..E 015

/ / DUD - -- -A! UA C25,

m-ST S, "'L ' "' T

Sn E ' r'.)r) I T r...43L' G

*A ITH'ETIC T AC 
4L-

*NA'H SOLTN 44LP UG

* OLUTION Dr _IiLP 
,FO

SUPf'OUT R P C TN NA 1 !VAR.?)

LINIEAR p, 'qA IN- FOI" THE 1130 -- SOLUTION PHASF _6 "

Af" NS OR 0 ~ (1 2

COM AON '\ 17,2 ) ,:(17),L(17) T II ,JJ I I iv-

C : D I VAX( 12), I'( 12) ,PC(12) ,0(12)

COM O! I v'AX (12) ,E VI (12 ) ,C(3 13 ) ,TC (3) ,DELT TCS *COL S I L ST2
2 FO " AT (2 1 9 PF P ) ,,,-;LP'OG

S O" AT ( 4,F2,.R) ,?0_ RL. F 3G

A R AT(1IL! I FEASIA LE) 50LPROG

7 FC R'!AT(24H VAR IAPLE VALU-) 1LPOG

FOR'AT(1.1 FU'CTIONAL,F20.89//) 2LPROG

.FO ',A' (,24H A '.; IArLF SHAD. COST) ___LPRGG

10 FORVAT(1H ) 5 4LPJG

Tii 5C1F"AT(R 5 i ITE . UNCTIO'!AL VAR. I ) 55L -_ _.

103 FO'.RAT(9H rFASIFLE) 56LP.-G

1 5 CC o"AT( I4, 1 .2, 10X I4) 57L I ;'G

1?. FO 'AT ( ."-. ,' '-, 5 L " O G

CALL -"AT ''.  ( 7 , ISHA) __S--_.

CO, TO ( 7' ,,1) ISW

721 CONT IN' ,)E

. IT ( , ) 5 ' LPROG

7 . CONTIN,
' K 0 60L P. OG

CALL :-AT, (1 , S 61L 'OG .

0 TO0 (n 22),ISW 62LPR G

)? I= 1
_ 6 3LPR:.tG

23 I=IT+1 64LP ' CG

IF (I-I I) "49402940 65L7ROG

2? IF(L( I) )2?3,25,23 66LPROG

23 DO' 27 J=1 J. J 67LPROG

IF((I. J) )26,27 26 68LPROG

.. A(1 IT J )= (I I f J)-A( I J ) 69LPROG

? CO'TI :iF 70LPROG

go T p2 71 LPROG

Sv=III 72LPROG

) =4 73LPROG,(v)=0 74LPROG

I C!" = ___________ __ _ __ _ _ __ _ _ __.___ _ _ __ _-7_.5L.LfCG

, j=j+1 76LPROG

I F (J- J) A1 45 77LPROG

41 IF A ( J)) 43 '2 ,42 78LPROG

4 ( )-A ( ,J) )42, 4 47 O79LP G

47 .( )=,,.( ,J ) 80LPROG

(V ) J 81LPROG

,C TO 4? 82LPROG

45 IF(L() ) .-",-2,46 83LPROG

46 YKJ=L(v) 84LPROG

DO 120 I=,II 85LPROG

IF(A(T,<J))120 120,123. 86LPROG

12 COTINUF 
87LPRVWG
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AtRITF (I W 130) .1i

STOP 90 L P R (;G
121 I=1 91 LPOG

J =. 92LPRG
5 1=I+1 3LPROG

IF(I-II)52,52,56 ALP:,G

5 2 I(A(I J) )509,51 LPROG

51 X=A(IJJ)/A(I ,KJ) 5 LPR G

I F ( JK ) B 9 9 3 5 .,  9 L PR CG

55 IF(X- Y- ) 1 3 50 0 9LPR G

53 X1IN=X 99 LPROG

JK=I 1 OLPROG

GO TO 50 101LPR OG

r5 X=A(JJq) 102L.PROG

L ( J ) =" J 10 23 LPR OG

DO 57 I=1, III 104LPRWG

57 W()=A(T I9YJ) 1,5LPROG

I J= J(-1 106LPROG.

DO 5 1= 19.1 10C7LPROG
DO 59 J=1J 10 Lp ROG

P) 1OLPROGIF(AI.J :,J) } .59,57 109LPROG

58 IF(W(I))5o ),9,5LRO

.£0 A( TJ)=A(TIJ)-W(I)*(A(JK J)/X) liOLPROG
59 CONTINUE 1 12LPROG

112LPROG
IJ=JK+ 

1 12LPROG

DO 61 1=IJIII 114LPROG

SDO61 J=lJ.J 115LPROG

IF(A(J,J ))AO,61.60 116LPROG

6 IF(w(I))60,61,600 1617LPROG
6. 0 A(I,.J)=A(I ,J)-W(I)4 (A(JKeJ)/X) 1l7LPR OG6 lIF V 1 i)PR6

6 1 CONTINUF 11FLPROG

DO 205 J=1JJ 120LPROG

~?C5 A(JKtJ)=A(JYJ)/X 121LPROG

v KK = .y %+1

Gro TO (702.703) , MISW

7 "3 CO'T INUE 122LPOG
.'R I TF ( V.,105 ) KKK A (K 9JJ) L JK) 12 LPROG

702 CONT I NUE 12LPROG

CALL DATS,(4,ISw') 124LPROG

GO TO (70,a44),ISW 124LPROG

62 IF(KF-1)70.70*63 126LPROG.

63 IJ=JJ-1 127LPROG

0 65 .J-=1 * JTA

IF(A(KJ)-*0001)65,6
5 96 6  128LPROG

1 29 ILPRQG
FA CC'ONTT f'IP 130LPROG

W ITE(I o",13) 131LPROG

Do 131 J=1 J J 132LPROG

31 A(III),))=l. 132LPROG

.= 133LPROG

K =0 135LPROG

GO TO 144 136LPROG

66 W'RITE(!.,6) 137LPROG

PAUSE 
137LPROG
138L.PROG

70 WRITE(IW
',P)A(1JJ)

GO TO (704,705)#MISW

70)5 CONTINUE 139LPROG
wRITE W7) 

139LPROG
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) 71 1=2,.11 140LPROG

7 1 "! I TF( 1'! 5) L( ) ,A(IJJ) 141LPROG

704 CONTIN I;E 1)L

CALL D)ATS,! (9ISW) 
142LPROG

CO TO (72,75)ISl' 143LPROG

72 '? 1 T '( I Wlf) ) 144LPROG

I J=JJ-1 
I.5LaRQ-G

DO 74 J=1, IJ 146LPROG

IF( A( 1,.J ))7 ,74*73 147LPOOG

73 PTr. ITE(IW,5)JA( 1J) 148LPRG

74 CON(TI T 
14

75 CALL rAT5 i?,ISW) 150LD"'
. TC7.A6 ),ISW 15ILPROQG

776 I J= JJ- 
152LPROG

UC OtJMVY QPAf T FEED RLANK CARD-.TO THE PUNCHING STATION C , TIF 1442 153LPROG

PEAD(2,5 ) 
15 4LP ROG

0 -77 -=1l.IJ 155L RG

D0 77 I=1III 156LPRWG

ITF(A(TJI J ))7R%77,7PR 1571 R .G.

7. WRITE(?9 )IJA(IJ) 158LPRCG

77 CO\NT IN r;u .-

WRITE (2, 100 ) 160LPR G

D0 90 T=1,1I 161LPROQG

9Q) W RITE(2? ) IL(I) ,A(I JJ) 162LPROG

S CAI L DATS'(,CaTSW) I63LPROG.

S TO (,1,12),ISW 
164LPROG

R2 CALL !ATS' (l,ISW) 166LPROG

O, TO (PI%54)IsW 
167LPROG

93 CALL LINV(QIGHT) 16PLDROG

94 CAll FXTT 15 9 L2)ROG

FND 1 7OLPRCG
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SHUTTLE ASCENT DATA MAX Q

m = 1,313,800. C- =0..
yP.

I = 30,812,000. C = -. 4257

IXZ = 12,682,000. C2 6r = .04217

I ZZ = 316,950,000. C 6el = .07479

Sre f = 249.91 C£6e23L = .1063
ref k6 e2 3L

bref = 32.8 C£6e23D = .02295
ref e

g= 31,233 C£6e4L = .2502

g = 9.77 C£6e3L = -.3165

6 = 53.2 C 0.
o r

U = 398. C P =0.

W = 7.55. C = 1.249
o n

VT = 398. Cn6 r  -.1019

C = -2.567 Cnel = -.1831
u n6el

C6 r = .1092 Cn6e23L =--.377

Cy6el = .2781 Cn6e4L = -1.158

C Y6e23L= .5562 Cnde5L = -1.158

CY6e4L = 1.505 Cnr = 0.

C Y6e5L = 1.505 Cnp = 0.

Cyr =0. CD = .00035 nt/deg

R
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NAR CONTROL SCHEME MAX Q

9 Torque Command

= A1 P + A $
ip 0

p= Air r +Ao$ + AKY

* Signal Distribution Scheme

Sel = 6e23D = 24

6R = 5

6e23L =

6e4L =  -

6e5L = F ( + - )

D-2


